Pollution Of Ashtamudi Estuary Due To Retting Of Coconut Husk And Its Environmental Impacts

Najee M, Dr. M C Philipose

Abstract— Coir industry in Kerala brings sizeable income and sustains a large number of people. It also causes serious threat to the environment affecting water bodies, air and land causing severe health impacts. Natural retting of coconut husk, which is done in the initial stage of coir production has always had harmful effects. This study is focused on the variation of physicochemical parameters in water samples taken from different sites of the Ashtamudi estuary where intense retting is going on. The physicochemical parameters like Total Dissolved Solids (TDS), Dissolved Oxygen (DO), Total Hardness, etc. showed much deviation from the standard values.

Index Terms — Retting, Ashtamudi estuary, coconut husk,coid industry, health impact, TDS, DO

1 Introduction

In the classification of lakes in India, Ashtamudi lake in Kollam district, Kerala has been classified as coastal estuarine lake of brackish water. The lake has been included as one of the RAMSAR sites since it is a good representative of a wetland that plays substantial hydrological, biological and ecological roles in the natural functioning of a major river basin or coastal system. Moreover it supports endangered species of Indian plants, certain species of mangroves and marshy plants and remains as a habitat for variety of fishes and aquatic fauna¹. Retting is a traditional process and is practiced by soaking green coconut husk in water. Thousands of coconut husks are filled in big coir nets known as 'malis' and they are buried in the shallow brackish water for a period of six to ten months. The period of retting depends on the age of husks and the nature of ambient water². During this period, the husks are subjected to microbiological action involving degradation of the non-fibrous components of the husk, facilitating the loosening of coir fiber in the husk. Retting of large quantity of husk has converted the backwater tract into virtual cesspools of foul smelling stagnant waters.

2. LITERATURE REVIEW

Kerala the land of backwater systems has retting as one of the traditional cottage industries. Retting activity is practiced throughout the banks of all backwaters. Retting process causes serious environmental problems and ecosystem damage. It affects the physicochemical characteristics of water, air and land and causes serious health impacts. Retting zone is ecologically an unfavorable environment except for a few tolerant species of organisms and that polluted area supports no life

3. MATERIALS AND METHODS

The retting sites selected for the study were Kandachira, Kuppana, Vettuvila and Olikkara in Kollam district, Kerala State, India. Thevally, another site in Ashtamudi estuary where there is no retting activitiy is selected for comparison. Studies were conducted to assess water pollution by collecting samples for analysis in the laboratory. Water samples were collected in plastic bottles for the analysis. Samples for BOD analysis were taken in separate bottles. Analysis of various physical and chemical parameters were carried out by standard methods⁴. Samples were collected from the sites at three different periods related to monsoon, pre-monsoon and post monsoon seasons. Coir workers health aspects were assessed at the sites of traditional coir retting by conducting surveys.

As demonstrated in this document, the numbering for sections upper case Arabic numerals, then upper case Arabic numerals, separated by periods. Initial paragraphs after the section title are not indented. Only the initial, introductory paragraph has a drop cap.

4. DETAILS OF WATER SAMPLE ANALYSIS

Table 1. Physico Chemical Analysis of Water from retting area

Station 1. KANDACHIRA

Sl	Parameters	Pre mon-	Monsoon	Post
N		soon		mon-
0				soon
Phy	sical Examinati	on		
1	Appearance	Brown-	Light	Brownish
		ish	brown	

Author Najee M is currently working as a Profesor I Civil Engineering, TKM College of Engineering, Kollam, Kerala, India., PH-919446527029. E-mail: najeetkmce@rediffmail.com

except the anaerobic microorganism³. During the initial phase of retting large quantity of polyphenol liberated into the water causes acute toxicity to the biological community.

Co-Author Dr. M C Philipose is currently working as Principal, Saint Gits College Of Engineeering, Kottayam Kerala, India, PH-+919946449179.
 E-mail: mcphilipose@hotmail.com,

2	Odour Foul			(mics/cm)						
		Smell								
3	Turbidity	7 170 11 36			C	Chemical Examination				
	(NTU)				6	,	PH	7.02	6.52	7.01
4	Total dis-	28200	15700	17000	7	,	Alkalinity	128	92	121
	solved solids				8	,	Total Hard-	2960	1810	2410
	(mg/L)				o	•		2900	1010	2410
5	Conductivity	5667	2905	832	0		ness (mg/L)	10	4	10
	(mics/cm)				9	,	Nitrate	13	4	10
	Chemical Examination						(mg/L)			
6	PH	7.67	6.82	7.18	1	.0	Chloride	9510	8850	10520
7	Alkalinity	136	71	128			(mg/L)			
	(mg/L)				1	1	Sulphate	32	186	36
8	Total Hard-	3860	2872	3350	1	.1	•	32	100	30
	ness (mg/L)	40	•	10			(mg/L)			
9	Nitrate (mg/L)	12	3	12	1	2	Dissolved	1.2	5.0	3.6
10	Chloride	4050	3280	292			oxygen			
11	(mg/L) Sulphate	58	130	31			(mg/L)			
11	(mg/L)	30	150	31	1	2	BOD	4.4	0	20
12	Dissolved	0.1	4.10	2.1	1	.3	вор	44	9	30
	oxygen						(mg/L)			
	(mg/L)	•			1	4	COD	90	31	64
13	BOD (mg/L)	38	12	24	_			-	-	-
14	COD (mg/L)	110	42	81	_		(mg/L)			

Table 2. Physico Chemical Analysis of Water from retting area. Station 2. KUPPANA

Monsoon

Post

Pre mon-

Parameters

N		mon-		monsoon
o		soon		
Phy	sical Examinat	ion		
1	Appear-	Brownish	Clear	Clear
	ance			
2	Odour	-	-	-
3	Turbidity	120	14	100
	(NTU)			
4	Total dis-	12100	10200	14200
	solved sol-			
	ids(mg/L)			
5	Conduc-	4862	2905	752
	tivity			

Table 3. Physico Chemical Analysis of Water from retting area Station 3. VETTUVILA

Sl	Parameters	Pre mon-	Monsoon	Post mon-		
No		soon		soon		
Phys	sical Examination					
1	Appearance	Light	Light	Light		
		brown	brown	brown		
2	Odour	Foul smell	-	Foul smell		
3	Turbidity (NTU)	120	15	110		
4	Total dissolved	32120	22810	34405		
	solids(mg/L)					
5	Conductivity	1215	3120	3910		
	(mics/cm)					

100112	223 3010									
						(mg/L)				
Chen	nical Examination				11.	Sulphate	420		140	198
6	PH	7.08	7.03	6092		(mg/L)				
7	Alkalinity (mg/L)	110	84	114	12.	Dissolved o	oxy- 0.3		2.20	2.1
8	Total Hardness	s 3100	2200	2940		gen(mg/L)				
	(mg/L)				13.	BOD (mg/L)	42		10	33
9	Nitrate (mg/L)	16	8	12	14.	COD (mg/L)	112		38	73
10	Chloride (mg/L)	8200	7950	9160						
11	Sulphate (mg/L)	372	325	412						
12	Dissolved oxy	- 0.3	4.0	3.2	Ta	ble 5 Physico C	hemical A	Analysis	of Water fro	m ret
	gen(mg/L)				ar	ea				
13	BOD (mg/L)	9	12	3	St	ation5. THEVAI	LLY			
14	COD (mg/L)	98	38	79	Sl	Parameters	Pre	Mon-	Post	•
					N		mon-	soon	mon-	
Tab	le 4. Physico Chem	ical Analysis (of Water from	retting area	0		soon		soon	
Stat	ion 4. OLIKKARA			-	Phy	sical Examinati	on			-
Sl	Parameters	Pre mon-	Monsoon	Post mon-	. 1	Apperance	Clear	Clear	Clear	
No.		soon		soon	2	Odour	_	_	_	
Physi	cal Examination				3	Turbidity	12	8	12	
1.	Appearance	Dark	Dark	Dark	4	Total dis-	625	520	510	
		brown	brown	brown		solved sol-				
2.	Odour	Foul smell	Foul smell	Foul smell		ids(mg/L)				
3.	Turbidity	160	120	132	Che	emical Examinat	ion			
4.	Total dissolved	24120	22030	22930	6	PH	7.1	7.0	7.2	
	solids (mg/L)				7	Alkalinity	52	48	46	
5.	Conductivity	5237	2705	730	8	Total Hard-	320	290	380	
	(mics/cm)					ness				
					9	Nitrate	8	6	12	
Chen	nical Examination				10	Chloride	625	700	710	
6.	РН	6.93	7.01	7.21	11	Sulphate	210	162	230	
7.	Alkalinity	123	168	213	12	Dissolved	5.2	8	7	
	(mg/L)					oxy-				
8.	Total Hardness	4220	3612	3820		gen(mg/L)				
					13	BOD (mg/L)	4	3	2	
	(mg/L)				13	BOD (IIIg/L)	-		_	
9.	(mg/L) Nitrate (mg/L)	14	4	12	13	COD (mg/L)	-	-	-	

5. RESULTS AND DISCUSSION

pH is considered as an important ecological factor and provides important information of the hydrogen ion concentration. The limit for pH value for drinking water is specified as 6.5 to 8.5. According to the present study the pH of all the samples come within the standards approved by the Bureau of Indian Standards⁵. Alkalinity is a measure of buffering capacity of water and is important for aquatic life in marine water systems. The values of alkalinity of the samples are within the limits. Total hardness is the sum of temporary hardness and permanent hardness. The samples collected from all the sites except Thevally showed very high values irrespective of the season. According to Indian Standards the total hardness of domestic water can be 300 mg/L of CaCO₃.

Dissolved oxygen is an important parameter which affects the chemical and biological aspects of the ecosystem. At levels of 4 ppm or less some fish or micro vertebrate population will begin to decline. Dissolved oxygen content of the samples collected from the retting area in the pre monsoon season showed very low values. Total solids is the sum of total suspended solids and dissolved solids Total dissolved solids of all the samples from the retting sites showed very high values compared with the acceptable limit of 500 mg/L as per Indian Standards. The BOD and COD values are high in the retting areas compared to non-retting areas. The presence of chloride and sulphate in water in excess amounts is not desirable. In the present study the concentrations of chloride and sulphate in the retting area are much higher than the concentrations in non-retting area. The desirable limit of chloride is 250 mg/L and for sulphate it is 200 mg/L respectively.

6. OCCUPATIONAL HEALTH SURVEY.

The survey conducted among coir retting workers reveals that many have skin problems including irritations, peeling and cracks in hands and legs. The people exposed to retting have nausea and vomiting when they stand close to retting pits for long time. Some of them were affected with asthma due to constant contact with this unhealthy atmosphere.

7. CONCLUSION

On the basis of the above discussion it is concluded that the retting areas in Ashtamudi estuary are highly polluted. Environmental pollution from coir extraction is heavily felt in the coastal areas of South India, especially in the State of Kerala. Ashtamudi estuary is an extensive estuarine system, second largest in Kerala. It is important for its hydrologic functions, biodiversity, support for fish and tourism. Even though there is considerable recognition of the roles that wetlands play, loss of wetlands continue at the global level. The main reason for such loss is lack of awareness among the community about the ecological functions of the estuaries. Low level of dissolved oxygen in the backwaters due to retting activity has adverse

role in the fish population and fishery. The impact of fish scarcity becomes an important social problem among the fishermen community. Apart from this, noxious smell of hydrogen sulphide emission from retting area results in air pollution and related health hazards. Flooding during monsoon disperses these pollutants to surrounding areas ultimately damaging the entire water body. Considering all the above serious problems, necessity to develop a green technology is realized for retting without damaging livelihood and industry.

REFERENCES

- Nair. N.B., Krishnakumar K, Abdul Azis P.K., Rajsekharan Nair.R, Dharmaraj K and Arunachalam. M (1983). Ecology of Indian Estuaries XI A, Preliminary survey of the fishery resources of the Ashtamudi estuarine system. Fishery Technology 20:75-83.
- [2] Thampan. P.K. (1989) Coconut Industry in India. Published by Coconut Development Board P (41-45)
- [3] Abdul Azis P.K. and Nair. N.B. (1978). The nature of pollution in the retting zones of the backwaters of Kerala. Aqua Biol, III, 41-62.
- [4] American Public Health Association, Standard Methods for examination of water and waste water APHA, AWWA, WPCF, Washington DC USA (1995).
- [5] Indian Standards Institution, Specification for drinking water IS 10500, New Delhi.